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FINAL REPORT ON THEORETICAL STUDY
OF SINGLE AND MULTIPLE SCATTERING BY CYLINDERS

1. INTRODUCTION AND SUMMARY

In this report we present theoretical results obtaimed in
the subject contract in the areas of single scattering and
absorption of electromagnetic radistion by arbitrarily oriented
conductive fibers, anmd ir radiative transfer by large aggregates

of such fibers.

It bas been determined that, in the case of single scattering
and absorption, the theory im its present form is capable of
producing reliable results over a very wide range of length-to-
wavelength ratio. An asymptotic expression is given for the
backscatter cross section in the large length-to-wavelength ratio
limit., In the small (Rayleigh) limit, it is shown that a previous
theory by two of the authors is in agreement with the more
complex present theory. Two classes of cases have been identified
in which the present theory is in error. In practical computa-
tions, these cases can be easily avoided without substantial loss

of information.

The detailed differential scattering cross sections have
been appropriately averaged for input to the Radiative Transfer
computer program, Representative results are presented in this
report. The program has been tested in various limits imncluding
isotropic scattering over a wide range of optical depths. These
results were found to be in excellent agreement with published

values.
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3 2. ELECTROMAGNETIC PROPERTIES OF CONDUCTIVE FIBERS
- Basic Theozxy.

This theory is based upon a variational procedure first set
forth by Tai for perfectly conducting wires,l and later extended
to the caso of finite conductivity by Cassedy and Fainberg, who,
however, considered only broadside incidence.2 In the present
theory, scattering, absorptionm, extinction, and radar cross
sections are calculated for arbitrary angles of incidemce. The
results can then be aversged over all angles of inmcidence to

obtain results for a cloud of randomly oriented particles.

Consider a plane electromagnetic wave incident upon a
cylindrical wire of fimite conductivity at asrbitrary angle of
incidence,®;, and arbitrary polarization angle, Y , as shown in
Fig. 1. Assuming the wire is sufficiently thin for the current
to be radially symmetric, omne may consider the current as a
current filament I(z) along the axis. Since the wire is assumed
to be thin, only the component of the electric field parallel to
the axis will stimulate a response, and the integral equation for

the boundary condition at the cylinder surface may be written

Jjkzcos0;

Eo sin 0; cosy e 1(z)Z

2w K h 02 -jkR
S A N S
Zw 0 4w -h k 0z

Here, Z is the skin impedance per unit length of the cylinder,

relating Hg to E,, and is given hy3

g I (ga)
7 = L (2)
2ra(o + juwr) Il (ga)
where
gz = wz[(uoeo cos2 Oi - hg) 4 1&2 ] . (3)
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Figure 1. Geometry of the Cylindrical Wire With Respect to the
Propsgation Vector k, and the Electric Field Vector,
E. 0; is the Angle Between k and the :z Axis; ¢ is the
Angle E Makes With the k-z Plane.
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Io(ga) and I1(ga) are modified Bessel functions. It may be noted
that the real part of 32 may become important in the visible
region. In Eq. (1)

no= uo/co is the characteristic impedance of free space, and

R=

(z-2')2 + 4a2 sin2 (2L
2

A stationary homogeneous functional expression cam now be

constructed for the current in terms of the backscattered amplitude

S, giving
2n oh b 2 -jkR h
k : J .
;[ d¢/J I(z)I(z") 1 + 3 J 2) s—ﬁ-—-dz'dz - ﬁ"—z—:/ Iz(z)dz
1. 0 -h-b k oz n - h
5 h 2
[k sin 9,‘/ 1(z) chz cos 91 dz] (4)
-h
For the current function we employ a series of harmonic terms, i.e., I
I(z) = I, 3 {Anfcn(z) + n,,f"(z)} . (5)
n=1
Here
fen(z)= cos nkz cos nqx - cos nx cox nqkz (6)
and
fgn(z) = sin nkz sin ngqx - sin nx sin nqkz , (7)

vhere q = cos ©; and x = kh, h being the cylinder half-length.

This currept function is summed over the number of terms appro-
- priate for the ratio of cylinder length to wavelength of interest,
f‘. generally N 2 2h/A. For n = 1, the current function becomes
identical to that used originmally by Tail and Pedersen4. Note
: that both fcp, (the even functions) and fg, (the odd functions)
*; vanish at z = + h, which is appropriate if the current is to be

zero at the ends of the fiber.
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When the current functiom is substituted into Eq. 4, the

following expression results:

N
+ A A (v -\ )+A B -\ -
mZ=l [ n m cnm cnam n mhcnsm cnsm) +AmBnhsncm xsncm)

2
N
¥ Banhsnm- xsnm)]}/[zl(Angcn * Bngsn)] . (8)
n=

Here the terminology of g’s, A's, and y's follows the previous

terminology of Tail, Cassedy and Fainberg2Z, and Pedersen? and is

as follows:

h
y - . ik .
e = kosing; f i (ae”* <01 g, (9)
e =k sinefh ¢ (z)e_jlw_co:i(?il
s s “z (10)
L 4miz f“ 2
C - n -h IC ('L) dz (ll)
\ -dmiz St o
s n J-h'lg (20dz (12)
4n iz
A = -——-L_-/.h
cnm n -h fcn(?‘)fcnl(z) dz (13)
. inj2 Jfl)f
snm n - h sn(z)ism(z) dz _ (14)
awiz (D
.tz .
cmsn n -h fcm(z)fsn(z)dz (15)

11




2w h. h :
k
?C = -{-“j; d¢./:hf fc (Z)fc (z') (1 +-l—2- 8—:'_2-) Tei dzdz' (16)

-h k
2w h h- 2 -jkR
K J
1, =2—'"f d¢ f £, (2 (2') 1+ =2 > § dzd= an
0 47~ h -k~ a3z
2 ‘ -jkR
k[ D , 1 _0% e Nazaa (18)
7cnm 2w dé fcn(z)fcm(z )L+ 2 2 E
0 -h "+ k 9z

K 2n f 1;1/‘ h 1 82 e-ij
y - = -2—-f dé fsn(z) fsm(z') (1 + =3 Z)E dzdz' (19)

spmo 2T -h -h k™ 8z
) /Zn /+.fh . 82 e-ij
= = ' _——) = '
Temsn  2n%0 a9 h“-h fcm(z)fsn(z ) <1 ' kz bz'z>R dzdz (20)

In the preceding equations, fcp(z) and fgpn(z) are given by
Eqs. (6) and (7).

Either by odd function considerations or by more elaborate
mathematical arguments it can be shown that the integrals of
Eqs. (15) and (20) are identically zero. The remaining integrals
have been evaluated in closed form, and the results listed in an

earlier report.4

After simplification, Eq. (8) becomes

1. g: ‘A 2 N )+B° X g A A
s &~ l n (7cn cn n hsn- sn) * [ n mhcnm-kcnm)
n=1 m=1
m#n
N 2
B - : 5
¥ Bn mhsnm xsnm)] [nzzl (Ani’cn ¥ Bngsn)] (21)

By the variational techmnique, the constants A, and B, may

now be evaluated by setting
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] 1
dA (S) =0 (22)
n
and
0 1,
b 5 70 (23)
n
Equation (22) then yields
N N
) + By - -
Za {(Angcn n”sn) [(‘ch )‘cn) +Z Am(‘ycn.m )\cnm)]
n=1 m=1
m#l
N
- A -\ +B. - -
chn[ n(ycn cn) n(7sn Ksn)+ E:I(AnAn47cnn1 xcnnﬁ
ms=
myn
B B -\ ] =
t n nJ7snn\ snng) } 0 (24)
while Equation (23) yields
N N
y + B - B -
Z {(Anécn ngsn) [(Tsn )\sn) ¥ Z mhsnm )\snm)]
n=1 m=1
m#n
N
-2¢ A -\ +B -\ + ) -
t’sn[ nhcn cn) n hsn sn) nzl (AnAmhcnm xcnm)
=
m#n
+ BB -\
n mhsnm snm))]} =0 (25)
it is

Equations (24) and (25) are non-linear and, therefore,
to solve for the Ap’'s and Bp's. To avoid the

(25), the following procedure

extremely difficult
non-linearity of Eqs. (24) and
was used. By multiplying each term in Eq. (1) by

{h
"h fsm(Z)dZ, 13
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where fo, (z) dz, is given by Eq. (6), we obtain

N
E_ cos ¢ < Jjnk ,
(:Q—T———~> Eem %?_ gg& A Oenm ™ Yenm? (26)
o

Similarly, by multiplying each term in Eq. (1) by
h
[h fcm(Z)dZ,

where fgp (z) is given by equation (7), we obtainm

N
E cos y s
(———-—o I > Bsm = i—nk ) B, (stm' ‘snm) (27)
o m n..-:_l .

Since gcm is real and ggy is imaginary, while Ycum: Ysnm:
Aenms 8nd Mgy, are complex, Eqs. (26) and (27) can be rewritten
in the following set of four linear equations.

N

-fan E_ cos v . = R . _
o Eom nZ:I[RL(An) Im (Vo = A enm)

nk Io

+ Im (An)'Re (fcnm - Acnm)] (28)

N

0 =2 [Re(A_)-Re(y A )] (29)
n=1 n

nm)-Im(An)'Im(chm- cnm

-3
cnm C

MU NSNS

N
2 n E_cos ¢ - . , -
H:, nﬁ T lgsm'_ 221[Re(3n) ReCisnm™* snm’
i - Im(Bn)-Im(stm-Xsnm)] (30)
53 and
- N
!!~ 0 ==}: [Re(Bn)-Im(ysnm-\snm)-lm(Bn)-Re(stm-Asnm)] . (31)
- n=1




If Eq. (5) accurately represents the current in the cylinder,

then for a given length cylinder, there should be a value of N
for which the values of the Ap,’'s and Bp's coanverge as more terms
are taken. Egs. (28-31) were programmed for broadside incidence,
but showed no convergence for even the smallest values of cylinder
length, It was, therefore, concluded that the series formulation

(Eq. 5) is not an appropriate form for the current function.

Next, a single value of n was chosen so that m = Integer
(kh + 1). Curves for differential cross section and back-scatter
cross section were computed and plotted for large values of kh.
These graphs showed an unrealistic number of resonances in the
differential cross—section and the back-scatter graph did not
agree with existing data. It was, therefore, decided to re-
examine the simpler current function of Tai where n = 1, using the

impedance Eq. (2).
WVhen n = 1, Eq. (5) becomes
I = Iy [fc(2) + A £4(2)]

where

fclz)

cos kz cos gqx - cos x cos qkz

and

fg(z)

sin kz sin gqx - sin x sin qkz .

By means of the variational techmique, A is determined to be

A= o8 e (35)

where g¢, 8g:, A¢g, hgs Y¢ and yg are given by Eqs. (9), (10),
(11), (12), (16) and (17), respectively with n = 1. Having deter-

mined A, the general far field scattered amplitude can be written
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/ g
(e,oi) =2 l-p2 { = ces g x (sin x cospx-p cos x sinpx)
(v,-2) LA - pd)

- (qcnf : ) (q sin q X cos px - p cos X sin Px)}

+] Bs sin gx (p sin x cos px - cos x sin px)
(rg=rg) (1 - Pz)
'—-Q——T(Zl‘jpx) (p sin gx cos px - q cos gx sin P’”: (36)

wheze p = cos ©, © being the scattering angle.

By definition, the differential scattering cross section is

then given as

9 B 2
0(0,0,) =R 2 l"SO
1 o] E
© (37)
2
1
k2
The total scattering cross section
2n " 2
o, * —2—-f 56, 0.) sin0d@ . (38)
k 0
The extinction cross section is defined by the well-known forward
amplitude theorem as
47 Im {[S(m - Oi’ ei)l (39)
Os = 2
k

16
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The absorption cross section is just the rms power absorbed in
the scatterer divided by the rms intensity of the incident beam.

The rms power absorbed in the wire is given by

h
P = Re(Z)/
a '.h

and the rms intensity of the © component of the incident beam is

I(z) dz

s0 that the absorption cross section is given by

_ 2nRe(2) )’h
a E 2
O

2

Q

1(z) dz . (40)

Finally, the radar cross section is defined to be

O‘RCS = 4n 0(91,01)
2 (41)
- |S(6 8;)
k-

Equations (37-41) are for polarization in the k~Z plane, e.g.
y= 0°,

The results achieved by using the above equations with n = 1
will be discussed in the following section. It appears at this

time that this theory may be valid for kh values much larger than
50.

17
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3. RESULTS

As discussed in the preceding section, the use of a Fourier
series representation (Eqs. S, 6, 7) for the current funmnction
resulted in the lack of convergence of the series. Considerable
effort was expended inm the analysis and this result was, of

course, disappointing.

After baving determined that the above non-convergence
property exists, it was decided that the n = 1 term of the current
function, e.g., Eqs. (32), (33), and (34), would be utilized in
conjunction with the surfece impedance function of Wait given by
Eq. (2). These expressions were substituted in Eq. (4), and the
variational technique, Eq.(22), with B, = A was utilized to
obtain the differential scattering, orientation averaged extinc-
tion, scattering, and absorption cross sections, as well gas the

radar cross section.

The objective of this analysis was to determine the range of
parameters over which the simplified current functiom could be

utilized. Questions to be answered were:

(a) Over what range of kh is the theory useful?

(b) In the limit of very large kh, do the differential
scattering patterns give reasonable results?

(c) Assuming that the theory is well behaved in the
kh >> 1 limit, can one obtain simplified asymptotic
expressions for the various cross sections?

(d) How do these asymptotic expressions compare with
those which can be obtsined from infinite length
cylinder calculations?

(e) Do the results agree with Rayleigh theory in the
appropriate limit?

18
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In the remainder of this Section, we prresent results which
demonstrate good asymptotic behavior in the large kk limit, as

well as good quantitative agreement with published experimental

- data and with Rayleigh theory.
3.1 Differecntial Scattering Cross Sectiop.

In this sub-section we present computed curves of differential

T — A A ey
L. AN

scattering cross section per square wavelength (adiffllz) as a
function of scattering angle O, It is importamt to note (see
Fig. 1) that the scattering angle is measured with respect to

the cylinder axis, as is the angle of incidence ©0;. In all

.v'vn—v-"
P . .

cases, the electric field is inm the plane of the incident k

vector and the cylinder axis.

In Figs., 2 through 9, the incident wavelength is 3.14 mm
and the cylinder radius is 3.0 micron (ka = 6 x 10-3). The
electrical conductivity is 3 x 104 mho/m. These parameters are

representative of graphite fibers illuminated by a 3 mm plane wave.
3.1.1 Beh s o .

Figures 2, 3, 4 and 5§ show the behavior of the scattering
pattern for three values of kh, where h = half length, In
Fig. 2, kh = 1. This particle should, therefore, scatter like a
simple dipole and we see from the figure that this is indeed so.
Note that, even though ©; = 309, the scattering displays a single
broad lobe which is symmetric and has a maxiwmum at 90°, which is

perpendicular to the axis.

In Fig. 3, the length has been increased from 1 mm to §

mm, corresponding to kh = §, We sec thst, im this case, the

scattering pattern is more complicated. We still see a little

bit of the symmetric (dipole-like) scattering at 90°, This is in

the intermediate range of kb. The pattern is largely symmetric,

with the major lobe appearing in the vicinity of 180° - 0; = 150°,
19




Theta inc(deg)= 30

Radfus(m)= 3.00t-06

Lengthi(m)= 1.80e-03

~ Lamda(m)= 3.14E-@3

khe 1.00E+00

¢ Cond.(mho/m)= 3.00E+04
Ymax= 2.71E-05

@ 90 180

Figure 2. Differential Cross Section/LambdaZ for 0; = 30°;
kh = 1
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Ymax

30

3.00t-06
S.80E-03
3.14E-0@3
S.086e+00
3.060E+04
1.73E-04

Theta inc{(deg)=
Radius(m)=
Length(m)=
- Lamda(m)
kh=
Cond. (mho/ip)=
Ymaxe=
R
| - |
%}
Figure 3.

kh = 5
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qux
Theta inc(deg)= 30

Radtus(m)= 3.006E-06 ’
Length(m)= 1.0806E-82 ,
- Lamdalm)= 3.14E-03 ,

kh= 1.00E+01
Cond. (mho/m)= 3.00E+04 |
Ymax= 6.26E-04 ‘
|
!
- i'
= !
i

i L )
90

Figure 4.
kh = 10
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Ympx

Theta inc(deg)= 30

Radfus(m)= 3.008E-06
Lamda(m)= 3.14E-03
- Cond.(mho/m)= 3.00E+04
Ymaxe= 6.26E-04

9

e 9 180

Figuore 5. Composite Differential Cross Section/Lambda? for
kh = 1) 5. 10 .nd ei = 300
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Note that, in the case of kh >) 1, the scattering amplitude is
constant in the axisymmetric comes whose included half angle is
O, the differential scattering angle of the figures. Therefore,
the differential scattering cross section at ©=180-0; is the
same as that at 6 = 180° + 0;. But, this latter scattering angle
is the direction of the incident k vector, and therefore, is the
forward scattering direction. It is well known that, for large
kh, we should expect to find a major lobe in the forward direc-
tion., Therefore, the lobe at © =~ 150° qualitatively agrees with
what we would intuitively expect for a moderately large value of

Xh and small ka.

If we next increase the length so that kh = 10 (a value well
into the kh >> 1 region), we see in Fig. 4 that the major lobe
of Fig. 3 develops into a much more pronounced peak in the
vicinity of © =~ 150°, This shows that the forward (0= 180° + 0;)
and specular (0= 1800 - ©;) scattering patterns are fairly well

developed.

Figure 5 is a composite of Figs. 2, 3, and 4, with all
data shown in correct numerical scale. It is interesting to note
that the peak for kh = 10 is closer to 150° tham that for kh = §,

which is in agreement with our expectations,

3.1.2 Behavior as a Function of ©;.

In the next set of Figs. (6 through 9), we fix kh at a
value of kh = 5 and choose three angles of incidence: ©; = 30°,
609, and 90°.

The scattering patterr of Fig. 6, for which ©; = 30°, is
that of Fig. 3 and is repeated for continuity. We see in Fig. 7
that, when 6; is increased to 60°, the major lobe shifts to © =

180C¢ - 60° = 120°, which is just what we should expect.
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Figure 6.
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Figure 7. Differential Cross Section/Lambda? for kh = 5. 6 = 60°
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At 0; = 90° (Fig. 8), we have broadside incidence and the
major lobe has shifted to 909 as expected. The pattern is

symmetrical about 909 as it should be.

A composite of the preceding three curves is shown in
Fig. 9, which demonstrates how significantly the magnitudes of
the scattering cross sections differ as a function of angle of

incidence.

3.2 Backscatter Cross Sections.

We have made a number of comparisons between the results of
the present theory and available measurements. The data presented

in this section are limited to moderate values of kh ¢ 10. It is

unfortunate that more experimental data are mnot available. In
particular, we have found no experimental data for lossy cylin-
ders. Available experimental data with which we can compare

appears to be limited to the backscatter cross sections of

perfectly conducting, but thinm (ka ( 1) wires. Notwithstanding,

considerable insight can be gained in the foregoing comparisons.

L N A S e ]
s S e T T N

3.2.1 Radar Cross Section v Aspect A e.

In this sub-section we compare the results of the present
ri theory with experimental data taken at Lockheed Georgiad for
- tungsten wires in the resonance region, The measurement frequency
i' vas 9.375 GHz. Wire diametcrs ranged from 1 to 3 mils. The skin
depth of tungsten is 0.04 mils at this frequency amd we can,
therefore, consider the conductivity to be infinite for Figs. 10
through 16. In these Figures, the solid curves are our theoretical

results and the dotted curves are experimental data. These

w-*vv.—V*rIvvv.

[AKRE AL NN

Figures are plots of backscatter cross section per square wave-
length vs. aspect angle with the E vector and the cylinder
axis in the rotational plane. Note that 90° and 270° represent

broadside incidence, while CO and 180° represent end-on incidence.

217

Y
PN
-t T
ol
S

L ST et e DRI YRS N et e
M B IS I S I S U U, Rt Tt e Sl WO IS S NI U Th)




Fadire s S g e ura i o Jaar e

anx

Theta inc(deg)=

Radius(m)=
Length(m)=

- Lamda(m)=

khe=

Cond. (mho/m)=
Ymaxe=

(% 1% 180

Differential Cross Section/Lambda? for kh = 5: 0; = 90°
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Figure 10 corresponds to the onset of the first (~ half
wavelength) resonance. Note that the angular symmetry of the

data is off by 10 to 15 degrees. If this were corrected, reason-

ably good quantitative agreement would be observed.

Figure 11 corresponds to the first resonance (2/A = 0.480)
and we find excellent agreement between theory and experiment.
Figure 12 (2/A = 0.496) shows good experimentel symmetry and
agreement within 10%. In., Fig. 13, in which 2/2 = 0.525, the
agreement is better thanm 10% when corrections are made for

experimental assymetry.

Note in Fig. 14, for which 2 /A = 0.854 the broadside (9009)
peak observed in Figs. 11 through 13, has split and the RCS is
reduced. Althougk the features of the theory vs. experiment
agree, the quantitative agreement is cnly within ~25% to 30% in
Fig. 14,

Figures 15 and 16 correspond to /A = 0.929 and /A = 1,051,
respectively, In Fig. 15, the experimental amplitude assymetry
is about 12%, while the agreement between theory and experiment
are within about 18%. In Fig. 16, & new maximum has formed at
90° and 270°, The entire pattern is reduced and only moderate

(20 to 25%) theoretical experimental agreement is observed.

3.2.2 Backscatter Cross Sectior vs, kh.

In this sub-section, we first compare the results of the
present theory with sore ea1ly eaperimental measurements osn
highly conducting wires by As and SchLeitt6.7 wjith the results of
the present theory, Figure 17, the experimentally otserved
backscatter cross section per square wavelength is plotted as a
function of kh for three values of ka. Note that an error exists
in this Figure. The solid line (ka = 0,132) and the dotted line
(ka = 0.026) were obviously inadvertently interchanged in the

30
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Radar Cross Section/Lambda2 of a Tungsten Wire as a Functioa of

Angle of Incidencs, ©;, for £/A = 0.525 and /4 = 660

Figure 13.




$5331

T

bl

rees H‘

Agircuth Angle in Deg

b4

.

-

H

.

.

|-$4

42

re o
\anaan 4l

e

1

23

4 4
%e
44

seu

od

L4334 -4

poze

+4

for 2/A = 0.854 and /4 = 717

Rader Cross Section/Lambda? of a Tungsten Wire as a Function of
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for L/A = 0.929 and 2/4 = 780

Radar Cross Section/Lambda2 of a Tungsten Wire as s Function of
Angle of Incidence, 6y,

Figure 15§,
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Figure 16.

for /A = 1.051 and 2/d = 884
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Figure 17. Experimentally Measured Backscatter Cross Section/
Lambda? for Infinitely Conducting Cylinders at
Broadside Incidence as s Function of kb. 7

38




SO NP BN AR A B i’ Al S AR T A B Dl it St S S e din < ha e i o AR St ame on P S S S Suth ea e W W —
. ATV R ATV TN . NI M e arg aop . A 8 n

------

original paper by As and Schmitt and the error was reproduced in

King and Vu,

Figure 18 shows the results of the present theory for the
same parameters as those of Fig., 17. Note that, except for the
deep minima of Fig. 18, excellent quantitative agreement is

demonstrated. The existence of these minima will be discussed in

Section 3.5.
Figure 19 shows the behavior of the backscatter cross

i: section vs. kh for four electrical conductivity values ranging
} from 100 mho/m to infinity. Note that (a) as we would expect,
}
b

the backsceatter cross sections decrease with decreasing conduc-—

tivity, (b) the plateaus degenerate to simple maxima, and (c) the

[~ three very deep minima persist even for small values of electrical
[‘ conductivity.
3.3 Very large Values of kh.

We next investigate the behavior of the theory when kh
becomes very large. The purposes of this are (a) to test the
stability of our solutions in the very large kh range, (b) to
determine, if possible, asymptotic expressions for the cross
sections, and (c) to see if the solutions appear to be reasonable

on physical grounds.

In Figures 20 and 21, which are analogous to Fig. 17, we

have plotted (linear plot) backscatter cross section per square
¢ kh ¢ 100. In Fig. 20, ka

= 1074 and in Fig. 21, ka = 10°3, We find that

wavelength vs. kh over the range 0.25§

(a) the backscatter cross section appears to be well
behaved in the very large kh regime

(b) The minima of Fig. 17 persist to at least kh = 100,
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Calculated Backscatter Cross Section/Lambda? for

Figure 20,

kh { 100 and ka = 10~4

Infinitely Conducting Cylinders at Broadside Incidence

as 8 Function of kh,
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An analysis of Figs. 20 and 21 gives the following asymptotic
relationship:

Rcs = 1 kh )2 (42)
X 2 4 tn(ka)
1 A

Another test of the theory is to observe the behavior of the

differential scattering cross section in the very large kh

e g Ca
'l'-'~.1 .'.'I
L PR

limit. The results of these computations sre given below.

tial scattering cross section per square wavelength for various

*z Figures 22, 23, 24 and 25 show the behavior of the differen-
_ values of kh. The cylinder orientation is broadside, with E
b

parallel to the cylinder axis. These values are kh = 10, 15,

25 and 100. Note that, as kh is increased, (a) the width of the
central maximum decreases, (b) the lobe structure becomes compres-

sed, and (c¢) unexpected minor lobes appear near 00 and 180°,

Except for (c) above, the curves of Figs., 22 through 235
appear very normal and well behaved. Also, we have shown that
the main lobe structure agrees exactly with the usual (sin2kh/2kh)2

representation.

Figures 26 and 27 represent an interesting and unantici-
pated result. First, note that the angle of incidence is 400 (or
50° off broadside). In Fig. 26 the total length (2h) of the
cylinder is an odd multiple of a quarter wavelength., Specifically,
the total length, 2= 2h, is given by &= 103.5 (A/2). Although
points are computed for only every degree of scattering angle, it
can be seen that the scattering patternm is well behaved, with a

large peak in the forward direction®,

*As was pointed out earlier in this report, the scattering is the
same at the angle 180° + O6; as at 180° - O;. Therefore, the
X large peak at 180° - ©@; can be interpreted as forward scattering

as well as scattering at 1800 - 0,4,
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Figure 23. Differential Cross Section/LambdaZ for an Infinitely
Conducting Cylinder, Broadside Incidence and kh = 15
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Figure 24. Differential Cross Section/Lambda for an Infinitely
Conducting Cylinder, Broadside Incidence and kh = 25§
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Figure 25. Differential Cross Section/Lambda? for an Infinmitely
Conducting Cylinder, Broadside Incidence and kh = 100
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Conducting Cylinder with @; = 40° and kh = 163
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This behavior of the scattering patterm is typical of nearly all
of the kh >> 1 scattering patterns which we have plotted. Ve
have, however, found an exceptionm to this behavior, It occurs
within a yvery narrow range of kh when the total length is
approximately equal to any (even or odd) multiple of a half
wavelength. When such multiples occur, i.e., £ = 2h = NA/2 when N
>> 1, we find a large peak (equal to the forward scattering peak)

in precisely the backscattering direction 6 = 0;,

- This behavior occurs for all angles of imcidence for which we
&: have made computations. An example of this is shown in Fig. 28.

This anomalous behavior occurs for less than 5% of the cylinder
lengths if we continuounsly vary cylinder length (0; # 90° and kh

>>> 1) and observe the scattering in the backscattering (0 = Oi)

direction., A further discussion of this anomaly will be given in

Section 4,

3.3.1 Aver Exti 0 Absor S e Cro

Secti elen .

In the case of transmission of electromagnetic radiation
into clouds of randomly oriented conductive fibers, one is
interested in the orientation averaged vaslues of the extimction,
absorption, and scatterimg cross sections. In particular, the
cross section per unit volume of the particle is of importance.
We have developed a computer program for the calculation of the

above cross sections as a function of the wavelength of the

incident radiation. The fixed parameters in the calculation are

fiber radius, length, and conductivity. One hundred and twelve

:f such sets of plots have been produced using the impedance of
'L Eq. (2) and the current function givem in Eqs. (32), (33) and
f (34)., These plots are being forwarded to Dr. Jay Embury at C.S.L.
; As examples of the above mentionmed plots, Figs. 28, 29, and
L 30 predict the spectral characteristics of thin graphite fibers
; in the spectral range 0.1 micron < A ¢ 100 microns. The fizxed
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Figure 28. Orientstion Averaged Electromagnetic Cross Section/

Lambda2 Versus Wavelength for a Cylinder 1 x 1073
Meters in Length
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parameters are radius = 0.1 p, comductivity = 3.3 x 104 pho/m,
and total length = 1 u, 3.3 p, and 10 u for Figs. 28, 29, and 30,
respectively. The dashed lines correspond to scattering and
absorption in the Rayleigh limit, Note that the various electro-
magnetic cross sections are averaged over particle orientation.
It should also be noted that the orientation averaged scattering
and absorption cross sections are computed by averagimg these
over all aspect angles and (in the case of scattering) all
scattering angles, as shown by Eqs. (38) and (40). However, the
extinction cross sections are computed using the Forward Amplitude
theorem Eq. (39). At any wavelength, the sum of the scattering and
absorption cross sections should, of course, be equal to the
extinction cross section. Since the extinction cross section is
computed by independent means, a good check om the theory is to
determine whether or not the equality Oapg + Gsca = Gext Prevails.
Indeed, it can be seen by inspection of the three figures that the
equality does exist throughout all but the shortest wavelength

range of these.

The purpose of including three figures is to demonstrate the
behavior of the cross sections as the fiber length is increased
from one microm to ten micronms. In Fig. 28, we see that the
absorption cross section becomes maximum at about A = 10 u and is
more thanm two orders of magnitude higher tham the scattering

cross section for wavelengths longer than 10 p.

In Fig. 29, the length has beenm increased from 1 p to 3.3
and we see that the absorption reaches its maximum at A = 20 to
30 microns and the scattering cross section is greater than that

of Fig. 28.

Figure 30 shows the behavior when the total length is
increased to 10 microns. Here, we see that the absorption (and

extinction) are fairly constant over the range 1 £ é 100 pu.
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The above Figures show that, increasing the length of the
fiber from 1 p to 10 p has improved the absorptive (and extinction)
properties of the fiber at the longer infrared wavelengths. It
is also seen that, as fiber length is increased, the ratio of
scattering to absorptiom cross sections increases (as we should

expect).

It is important to note that the numerical integrations for
Gsca a8nd Taps were carried out im 52 increments in both © and
0;. This rather coarse increment was necessary because of
computer memory limitations. As kh becomes larger, the scattering
patterns become more peaked, and the finer the angular integration
increment should be. The use of a 59 increment is probably the
reason for the inequality of Ggcq + Gaphs = OGext. This tentative
conclusion is reinforced by noting that the exact specular peak
at @ = n - @; is always included in the angular integration of
the differential scattering cross sectioms, and it is therefore,
weighted more strongly as the width of the peak approaches the
angular integration increment. We plan to compute a limited
number of plots similar to those of Figs. (28), (29), and (30)
using 1© jincrements, and to compare the short wavelength behavior

with that of Figures 28, 29, and 30.

Finally, it is interesting to note that, in the long wave-
length limit, previous results8.,9 based on Rayleigh scattering and
absorption (dashed line) are in close agreement with those of the

present theory.
3.4 Di ssionp.

The primary purpose of our theoretical work on scattering
and absorption by cylinders has been to include ohmic losses in
the historic formalism developed by Tail, Cassedy and Fainberzz.
and others. The reason for this has been to provide a useful
procedvre for the computation of scattering, absorption, and

extinction cross sections for lossy fibers. It turns out that
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essentially all of the avsilable experimental dats with which we
can compare the theoretical results involves wires having a
conductivity so high that, for all practical purposes, it is
infinite. This is why s large portion of the data presented in

this report involve infimnitely comducting fibers.

The details of the various scattering patterns which we have
investigated obviously depend to a very high degree upon the
current function. The absorptive properties, of course, also

depend upon the current function., We believe that good behavior

of the scattering patterns in a given regime justifies the use of
the present current function in that regime for the calculation of
absorption as well as scattering. To say this in another way,
a careful analysis of the scattering predictions of the theory is
a powerful tool in determining where the use of the present
theory is asacceptable and where it is not. In addition, as
mentioned in Section 3,2.3, the conservation of energy criterion

(Ggca * Ogphs = Oext) 8lso serves as an important validationm tool.

With regard to the data which we have included im the

preceding pages, we have the following specific comments:

(1) The features of the differentiasl scattering data of
Sections 3.1.1 and 3.1.,2 (Figs. 2 through 9) appear to
be as one would expect, with the forward scattering
lobe becoming more promounced as kh—=10. A somewhat
disturbing feature of these data is the presence of
rather larger lobes near 0° and 180° (end-on) than we
expected to find. We have found, bowever, that, as ka

is made extremely small, these lobes become smaller.

(2) The data on backscatter cross sections is very instruc-
tive. Our predictions agree very well with the Lockheed
measurements over the (rather small) range of 0.480 ¢
2/2 ¢ 1.051 in Sectiom 3.2.1 (Figs. 10 through 16).
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- The quantitative and qualitative details of the theory
vs. measurements are in good agreement.

In Section 3.2.1 very good agreement is demonstrated
between theory and experiment for the three ka values
of Figs. 17 and 18. However, note that the deep minima
appesring in Fig. 18 are definitely inmcorrect. These
zeros in the backscatter cross section occur for
arbitrarily small ka values, and therefore, signify
zero values of S(0), the forward scattering amplitude.
This, in turn, forces the comnclusion that the total
cross section is zero at these values of kh, which

cannot be.

The above problem canm be directly traced to the current
function of Eqs. (32), (33), and (34). If we integrate
the current function over the length of the wire and
set the integral equal to zero (e.g. net curreant = 0),
we find that the relation tan(kh) = kh obtains. Ve
have done parametric plots of this equation and find
that the zeros of Fig. 18 occur precisely at the values
of kh which satisfy the above transcendental equation.
We should note that, in re-reading Tai’'s paper.l we
found that he had discovered the same problem and
produced the same transcendental equation, This
is a definite limitation of the theory. Aside from
this, we seem to be in good agreement with experiment,
Therefore, taking this reservatiom imto account, the
theoretical backscatter data for various finite values
of conductivity (Fig. 19) have high credibility.

(3) In the case of very large values of kh, we see that the
minima mentioned above persist out to at least kh =
100 (Sectiomn 3.3, Figs. 20 and 21), and predictions in
the near vicinity of tanm (kh) = kh should be disre-
garded. Aside from this, we find that the theory is

4 a

=
~-
-

-
-
-
-
.
-
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well behaved for extremely large values of kh for
broadside scattering. An asymptotic expression for
the broadside backscatter cross section vs kh was

derived and is given by Eq. (35).

The calculations of differential scattering cross
section vs scattering angle plotted in Figs. 26 and 27
are very well behaved and produce exactly the narrow
forward scattering lobe which we expected. However, we
have determined (as discussed inm Section 3.3) that,
within a very narrow ramge of /A, a large backscatter
peak occurs at all values of /A = N, where N is any
large integer. Since this behavior is essentially
independent of the angle of incidence, we conclude that
it is incorrect and reflects a limitation of the simple

current function which we are using.

(4) The computations plotted im Figs., 32, 33, and 34
(Section 3.4) provide an example of the use of the
theory which we have developed. In order to obtain
accurate results in the larger kh range, we must
obviously use finer angular increments in the integra-
tions to obtain the total scattering cross sections.
We have realized this for some time and are taking
steps to obtain higher computational speed and more

needed computer memory. It is particularly interesting

to note the good agreement inm the Rayleigh region
between the early calculations of Pedersen and the

present theory.

It is recognized that realistic calculations in the
infrared and visible portions of the spectrum require
the use of established optical constants (complex
refractive index) and appropriste modification thereof

in the very thin limit of particle radius.
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In conclusion, we have found surprisingly good asgreement between
the theoretical predictions and available experimental data. The
calculations are well behaved out to very large values of kh
where we find no onset of instability. Two limitations of the
theory were identified. These occupy only a very small fraction
of the kh values in any given kh range and such kh values can be
avoided in future computations without serious limitations of the
overall information which one can obtain. We believe that theory
as it now stands is, with these specific restrictions, applicable

to many problems of more tham passive interest to DoD.
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4. RADIATIVE TRANSFER IN CONDUCTIVE FIBER CLOUDS
4.1 Basjc Theorv.

The purpose of the radiative transfer portion of the program

is two-fold. First, we are developing a simple, efficient computer

program to handle the numerical computation of radiative transfer
in slabs for a wide range of scattering/absorbing particle
parameters, and for quite general particles. Second, we are
integrating the RT program with a computer program that treats
- the scattering and absorption specifically by lossy conductive
': fibers, in order to determine the overall electromagnetic behavior

3 of such configurations,

The basic RT theory has been described earlier.10.11 Egsen-
tially, we are using the van de Hulst doubling method with a Taylor
series representation for the starting (thin-layer) values of
the transmission and reflection matrices, including up to fourth-
power terms in the optical depth. This innovative treatment
of starting values enables us to avoid the cummulative error
build-up incurred when one begins with infinitesimal starting

layer thicknesses.

In brief, the theory runs as follows, In order to interpret
the transmission and reflection matrices, which are the basic
quantities computed, consider Fig. 31, The layer of optical depth
x contains & cloud of randomly oriented and positioned fibers (or
other scattering particles). Radiation is incident from outside
the layer, and we characterize the right-going and left-going
parts at any point in the layer by u and v, respectively. The
spatial direction variable has been discretized, so that more

specifically u is an N-component column vector giving the angular

distribution of radiation into the right hemisphere, and similarly
- for v. Now u(0) represents radietion incident on the fronmt face
ﬁ: of the layer, giving rise to transmitted intensity

u(x) = T u(0) (43)
and reflected intensity
o v(0) = R u(0), (44)
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Figure 31. Discretized Right-Going (u) and
Left-Going (v) Radiation.
Ej both of which can be computed once the t{ransmission and reflection
;i matrices T and R are known,.

One begins by evaluating T and R numerically for a layer
very thin compared with optical depth, i.e., x <(( 1, using the
formulas

o 2
T=1-Qx+a/zn @ +Q,%

i 3 2 2 3
(1/3!)(QI +Q2Q1QZ+ZQIQ2 +2Q2 Ql)x

4 2 2 2 2 2
+(1/4!)(Q1 +Q2Q1 Q?_+3Ql Q2 +3Q2 Q1

4 2 4
+3QlQ2QlQZ+3Q2QlQZQ1+5Q2 -I-SQlQ2 Ql)x, (45)
R= Q x-(1/20)(Q Q +Q. Q) x>
2 1 2 2 1
2 2 3 3
+ (1/3!)(Ql Q?_+QZQl t2Q, +ZQ1Q?_Q1)X
3 3 2 2
- 1/ 4!
» (1/ )(Ql Q2+QZQ1 +3Q1Q2Q1 +3Ql QZQI
:' 2 2 3 3 4
+3Q?_QIQ2 +3Q2 Q1Q2+5Q1Q2 +SQ2 Ql)x . (46)
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These equations give a particularly compact method for obtaining
T and R to high accuracy; the scattering behavior of the fibers
themselves enters in the determination of the quantities Q; and
Q2, which are dofimned explicitly in terms of the single fiber
scattering pattern.l1l0

Having obtained T and R for the thin layer, the corresponding
values for layers of arbitrary optical depth are now computed by
successive applications of the doubling equations. Writing Ty =
T(2x), R = R(2x), one has

Ty = T (1 - R2)-1 T, (47)
Ry = R + TR (1 - R2)-1 T, (48)

There are thus one matrix inversion and several multiplications
required at each stage of doubling. The starting layer thickness
should be chosen judiciously in order to optimize the accuracy of
the computation; note that the smaller the initial choice for x,
the more accurate will be the starting values for T and R from
Eqs. (45) and (46) but, on the other hand, the more repetitions
of the doubling equations that will be required, with attendant
loss of precision, in order to attain a given optical depth.
Numerical trials have been carried out which ensure that we work

with near-optimum starting depths.

For the discretization of the radiative transfer equation we
have employed the extended Simpson’s 3/8 rule, which can be
derived without difficulty from the ordinary 3/8 rule available
in the literature.l2 As the extended rule is not too well knmown,

we state it here:

b
J/. dzf(z) : (3h/8) [f(zo) +38(s) 4 31(z,)

a (49)
+28(ny) +30(z,) 4 - +1(z3sq +R,
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The range of integratiom is divided into 3s intervals each of
width h, where h = (a-b)/3s, and we choose s odd, so that 3s = 3,
9, 15, 21, ... . The remainder term can be estimated by

R3s = -(h4/80) (£(1ii) (p) - gliii) (q)] (50)

in terms of the third derivatives of the integrand at the end
points,

In the present application, z is identified with p = cos O,
where © is the angle formed by the radiation flux with the forward
direction (x axis in Fig. 31). Thus, T and R will determine
radiation patterns over the discrete set of directions having
uniform increments in cos 6. The extended 3/8 rule enables us to
avoid the equatorial direction © = n/2, which can cause numerical
difficulties. It also permits us to readily adjust the grid
spacing in cos ©, something which is not possible with the more
commonly employed Gaussian quadrature, because of the complexity

of determining weighting coefficients and ordinates in the latter.

4.2 The Phase Function.

The basic single-particle inputs needed to the RT computer

program are the albedo

scnttering cross—section
extinction cross-section

, (51)

-]

and the phase functionm py, (u, p'), obtained by simply integrating
the scattered power p (p, Oy p’, PA') over all aszimuths 9, 0'.
Here p = cos © and P are the angles of incidence, and p’ = cos

6', O’ the angles of observation.

There are two ways of proceeding, depending on whether or
not analytical expressions are available for the phase function.

The twc simplest analytical cases arel3

Py (pu, p') =1 (Isotropic) (52)

and

Polp,p’) = % (1+p2p'2 + % (l-uz)(l-uz)(l-u'z)]. (Rayleigh Sphere)

(53)
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Polp,n') = % [1+p2p°'2 + % (1-p2)(1-p2)(1-p'2)], (Rayleigh Sphere)
(53)

the latter being appropriate for small conducting spheres with
unpolarized incident radiation. These cases are useful for
verifying the validity and accuracy of the computer program;

numerical results are readily available for them in the literature.

In the absence of analytical expressions the phase function
must be handled in tabular form,. Following Ishimaru,13 ¢his
is done as follows, For inputs we employ the single-scatterer
intensities S(p;) evaluated at (3s + 1) equally-spaced points
in p. The reflection and transmission matrices R and T will
each have dimensions (3s + 1)/2 x (3s + 1)/2. Note that S(p)
represents the scattered intensity averaged over all scatterer
orientations, for incidence im the directiom u = p3 = 1 (the

forward direction),

The phase function cam now be determined from
M

P (b’ = é%% WP G Py, (54)

iz terms of the Legendre polynomials Py, The latter are determined
in standard fashion using a rfecursion sub-routine based on the

formulas

Pgp = 1
Pl = u »
and 1
P = (=) [emou pianmm e 0] (55)

The constants W, are given by

) +1

T (____)S du (1) S (W), (56)
m 2m+1/ J-1
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and the summation of Eq. (54) is terminated whem the Wy become
negligible. The integral of Eq. (56) is approximated using
Simpson’s 3/8 rule, Eq. (49), with grid spacing h = 2/3s.

The doubling method can now be applied to obtain the reflection
and transmission matrices for layers of any desired opticsal
length. In order to obtain physical results, matrix eclements
must then be weighted sppropriately to allow for the specific

quadrature rule employed. If we define normalizimg constants

c(n) = (a, u ) n o= 1,2, ..., ¥ (3s + 1), (57)

where the a, are the 3/8-rule weighting coefficients, then the
net fluxes reflected in the back hemisphere, or transmitted in

the forward hemisphere, are given respectively by

¥(3s+1)

1
ETTT;;% R(n,1) c(n)
(58)
2(3S+1)
c_T( E T(n,1) c(n)

These equations are for radiation incident normally on the slab,
which explains why only the first columns of R and T are needed.
For isotropically imcident radiation, all elements of R and
T would come into play. For the angular intemsity patterms, on

the other band, one has

R(n) = R(n,1)/2 c(lycn)

(59)
T(n,1)/2 c¢(l)c(n) , n =1, 2, ..., ¥ (3s+l)

It

T(n)
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4.3 Orientatjon Averages.

For the conductive fibers, the first step in the analysis
involves orientation averaging of the single-fiber differential
scattering patterns. If p (a,P) is & unit vector along the fiber
axis, with spherical angles a,f relative to a fizxed cartesianmn
coordinate system, for a linearly polarized incident wave ej,
along the positive 2z direction we have og3iff = o4iff (a.p,0,0),
and the orientstion—averaged differential scattering pattern is
given by
2n T

daJ. dBsinR O4iff (x,8,0,9) (60)

_ 1
ogiff (8) = (Zm)s
O (@)

Note that strictly speaking it is necessary to also average over
the polarization angles of the incident and scattered waves.

Because we are only interested in scalar intensities, however, it

suffices to choose the incident polarization in the plane of

incidence (plane formed by the fiber and the direction of imci-
dence)., The scattered intensity is ther takenm without regard to
its polarization,. It is not difficult to verify that this

simplication does not affect the angular dependence of the result.

The scattering patterns are actually computed in fiber
coordinates, i.e,, in terms of the angle cos Of = prkoye formed
- by the fiber and the observation direction kyyu¢ (0,0). The angle
- ©f can be expressed in terms of the orientation angles by noting
?‘ that

[ cos ¢ = sin © sin P cos (P-a) + cos O cos B . (61)

We see that the @-dependence drops out during the integratiom, so

that the resulting pattern, Eq. (60), is rotationally symmetric.

The short-fiber limit Xxh <(<( 1 (b = half-length of fiber)
provides a useful check on the computation. In this limit we can
assume that the axial current induced in the fiber is proportional

to ejp°p = sin f and that the corresponding scattered amplitude

is given by ejp +p sin ©p, so that

=~
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Sqiff = % (ein-p sin ef) , (62)

where o, is the mazximum cross section obtained at broadside
incidence and observation, Putting this expression in Eq. (60),
and dividing by a factor of 4 to correct for not averaging over
incident and received polarization, gives finally

p - 2 (63)
Gdiff/co = (1/30) (3 + cos"6) .

This 3 + cos2 © angular dependence constitutes a2 new elemen-

tary scatterer for radiative transfer, which might be called the
Rayleigh fiber. Note that it falls intermediate relative to
the isotropic and Rayleigh sphere (1 + cos2 ©) cases.

Numerical computations of orientation-averaged scattering

from perfectly conducting fibers are shown in Fig. 32 for several

llv'.'.Yﬂﬁﬁvvv -
RN . .

values of kh (for clarity normalized to 4 in the forward direction

p = cos 6 = 1), The uppermost curve is the Rayleigh fiber
pattern of Eq. (63), and one notes that the numerical results
converge smoothly to this 1limit for kh <( 1 (the kh = 0.1 curve,
not shown, is indistinguishable). As kh becomes greater than
unity a significant peak is seen to develop im the forward
direction, typical behavior for scatterers when dimensions are

not small compared to wavelength.

It is interesting to note that the orientation—-average has
been computed by Borison, but for half-wave dipoles (kh = n/2).14
Upon averaging his results over incident and received polarizations
one obtains precisely Eq. (63). This does not agree with the
curve of Fig, 325 we believe that Borison's assumption of simple
cosine behavior of the surface current for all fiber orientations

is no longer adequate at kh = n/2,
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Figure 32. Orientation-Averaged Differential Cross Sections
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Now consider the slab geometry for a cloud of randomly
oriented fibers, as shown in Fig. 33. The cloud has optical depth
x, and one desires to compute the angular intemsities transmitted
and reflected, T(O6) and R(6), respectively, as shown in the

figure.

A simple check is available on numerical computations im the
thin-layer limit x << 1, As shown in Fig. 34, the transmitted
intensity per steradian in the direction p = cos © must originate
in the differential cone of fibers indicated. But, in the
thin-layer limit, the contribution from an element of the cone
will be proportional to albedo a, the phase function p(p), and
exponential factors accounting for attenuation of radiation over

the travel path within the slab. Thus, with x' = x-ps,

x/u -x' -s
I(u) = xap(w) S ds e c 7, u>0. (64)
o)

A similar equation can be written down for the reflected intensity,

and carrying out the integrations gives

-X (1_e-(1-u)x/u)/(1_p)’ H> 0

sC‘
I(u) = saplu) l (65)

(1-I%/0 7y, w<o

These last formulas are given by van de HulstlS for the isotropic
case p(p) = 13 clearly, from our derivation they must continue to

hold for arbitrary p(p).

Intensity patterns have been computed numerically for an

optical depth x = 0.1 and the three elementary scatterers,

isotropic, Rayleigh sphere (dipole), and Rayleigh fiber. Results
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are shown by the points in Fig. 35. The corresponding anmalytical
approximations of Eq. (65) are given by the solid curves in the
figure, and excellent agreement is seen throughout. Incidentally,
van de Hulst gives the theoretical valuwe K = 1/4 for the propor-
tionality constant of Eqs. (64) and (65). VWe find that much better
results are obtained using a somewhat larger value obtained by
matching Eq. (65) to the computed point for mormal reflection for
transmission (p = + 1). For example, for isotropic scatterers
the two computations them agree to four significant figures,
excepting only the point p = -,04762, where agreement is slightly

poorer,

4.5 ne Res .

A plotter routine has been developed for the reflected and
transmitted intensity patterns, and some typical results will

now be shown for normal incidence on slabs of optical thickmess x.

In Fig. 36 angular patterns are shown versus observation
direction p = cos & for lossless isotropic scatterers. For
this case s = 9, and R and T are of dimension 14 x 14, Note
that our quadrature scheme avoids the equatorial plame u = O,
where analytical difficulties arise (the curves are easily extra-
polated if desired, however). In the transmitted patterns the
coherent field, that portion of the originally incident beam
which has survived, is represented by a discrete version of
the delta function (sharply risimg curves near p = 1, truncated
at unit intensity for clarity). As was observed earlierll these
results, including the discrete delta function coantribution,

exactly satisfy energy balamce constraints,.

The same computation is carried out in Fig. 37, but for much
coarser grid spacing (matrix dimension 5 x 5). Aside from the
obvious change in the discrete delta fumctionm contridbution,
these curves are seen to be effectively identical with those

of Fig. 36. This demonstrates the stability of the computer
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program with respect to grid spscing at least for this simple
case, and also confirms the oase with which grid spacing can
be adjusted to fit the problem at hand.

In Figs. 38 and 39 (albedo = 0.8, 0.5 respectively) losses
are introduced, with corresponding reduction in the intensities.

For all of these results, checks with the numerical tables of van

de HulstlS give excellent agreement.

Figures 40, 41 and 42 show the intensity distributions obtained
nsing the Rayleigh phase function of Eq. (53), and albedos of
1.0, 0.8,. 0.5. Note that there is not too much difference
from the isotropic case. The Rayleigh case differs in that

single particle scattering is now more concentrated in the forward
and back directions. In terms of scattering angle O, the single-

particle intensity is given by13

21+ cos? 8) . (66)

the effect of this is evident when one compares the reflection
[ ]

curves, which have become relatively somewhat larger in the

back direction (g = -1), although not much change has occurred

in the transmission curves.

In Fig. 43 plots of the transmitted and reflected intensities
are given for an optical depth of unity, where the single scatterer
is 1) isotropic, 2) Rayleigh sphere, 3) the Rayleigh fiber of
Eq. (63), and 4) the short fiber (parameters as noted im the
figure). Note that, just as was true for the phase functions,
the radiative tranmsfer intensities for the Rayleigh fiber fall
intermediate between the isotropic and sphere case. It is also
interesting that the Rayleigh fiber and short dipole (kh = 0.5)
results are now indistinguishable, even though their phase

functions are measurably different (see Fig. 32),
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Figure 43. Angular Flux Patterns for Various Scatterers
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Dependence of the RT intensities on fiber length is indicated
in Fig. 44, for fairly highly conducting fibers., From the figure
one can see that both the transmitted and reflected inmtensity,
integrated over all angles as in Eq.(58), show a mild peak at
about kh = 3, although the reason for this is not clear.

For fixed fiber length kXh = 3, dependence of the RT inten-
sities on optical depth x is shown in Fig. 45. As one would
expect, the reflected patterns increiso monotonically with x, at
the same time becoming more nearly isotropic. The transmitted
patterns show the same behavior in the diffusely transmitted flux
up to about x = 1, with corresponding reductions in the coherent
flux (becauvse of truncation the latter effect is not obvious from
the figure). With further increases in optical depth the tramns-
mitted flux begins to decrease, presumably because scattering and

absorption mechanisms now dominate.

Finally, Fig. 46 illustrates the effect of varying the fiber
conductivity, maintaining a fixed fiber length kh = 1 and optical
depth x = 1, Both reflected and transmitted patterns are seen to
increase monotonically with conductivity, both also showing signs
of saturation for the uppermost curves, which are effectively
approaching the perfectly conducting limit, Again, the curves
behave qualitatively as would be expected, in view of the fact
that the albedo is increasing toward unity with increasing conduc-

tivity.

The above examples illustrate the usefulness and versatility
of the computer programs. These programs are now sufficiently
well developed to begin running specific problems of practical
interest to CRDC involving both single fiber scattering and
absorption, and the radiative transfer properties of the corre-

sponding fiber clouds.
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Reflection Transmission

PARAMETERS (MKS)

Wavelength= |, BE~-B6
X ka= 1 .QE-@1
Canductivity= { BE+@7
Optical Depth= 1. 0E+80

: kh=3

Figure 44. Angular Flux Patterns for Various Fiber Lengths
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Figure 45. Angular Flux Patterns for Various Optical Depths
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Figure 46. Angular Flux Patterns fcr Various Conductivities
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